Krylov-based algebraic multigrid for edge elements

نویسندگان

  • François Musy
  • Artem Napov
  • Yvan Notay
  • Ronan Perrussel
  • Riccardo Scorretti
چکیده

This work tackles the evaluation of a multigrid cycling strategy using inner flexible Krylov subspace iterations. It provides a valuable improvement to the Reitzinger and Schöberl algebraic multigrid method for systems coming from edgeelement discretizations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biorthogonal Wavelet Based Algebraic Multigrid Preconditioners for Large Sparse Linear Systems

In this article algebraic multigrid as preconditioners are designed, with biorthogonal wavelets, as intergrid operators for the Krylov subspace iterative methods. Construction of hierarchy of matrices in algebraic multigrid context is based on lowpass filter version of Wavelet Transform. The robustness and efficiency of this new approach is tested by applying it to large sparse, unsymmetric and...

متن کامل

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes

We derive and analyze new boundary element (BE) based finite element discretizations of potential-type, Helmholtz and Maxwell equations on arbitrary polygonal and polyhedral meshes. The starting point of this discretization technique is the symmetric BE Domain Decomposition Method (DDM), where the subdomains are the finite elements. This can be interpreted as a local Trefftz method that uses PD...

متن کامل

A GPU Accelerated Aggregation Algebraic Multigrid Method

We present an efficient, robust and fully GPU-accelerated aggregation-based algebraic multigrid preconditioning technique for the solution of large sparse linear systems. These linear systems arise from the discretization of elliptic PDEs. The method involves two stages, setup and solve. In the setup stage, hierarchical coarse grids are constructed through aggregation of the fine grid nodes. Th...

متن کامل

An Algebraic Multigrid Method for Quadratic Finite Element Equations of Elliptic and Saddle Point Systems in 3d

In this work, we propose a robust and easily implemented algebraic multigrid method as a stand-alone solver or a preconditioner in Krylov subspace methods for solving either symmetric and positive definite or saddle point linear systems of equations arising from the finite element discretization of the vector Laplacian problem, linear elasticity problem in pure displacement and mixed displaceme...

متن کامل

A Novel Aggregation Method based on Graph Matching for Algebraic MultiGrid Preconditioning of Sparse Linear Systems

Multilevel techniques are very effective tools for preconditioning iterative Krylov methods in the solution of sparse linear systems; among them, Algebraic MultiGrid (AMG) are widely employed variants. In [2, 4] it is shown how parallel smoothed aggregation techniques can be used in combination with domain decomposition Schwarz preconditioners to obtain AMG preconditioners; the effectiveness of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010